DIAMOND GRINDING

AN OVER VIEW OF PAVEMENT PERFORMANCE IN TEXAS

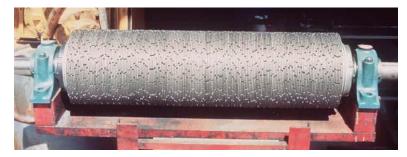
Feng Hong, P.E.

Texas Department of Transportation

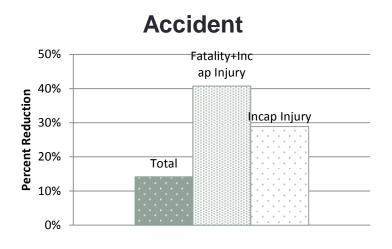
5/31/2013

Outline

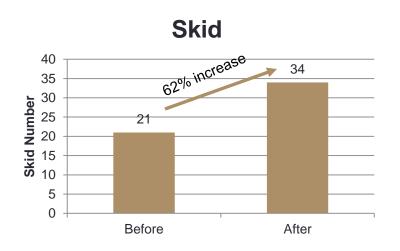
- Introduction
- Individual Case Studies
 - IH35, US287, US69, and US96
- Pavement Performance Statistical Analysis
 - Ride quality
 - Skid
- Summary

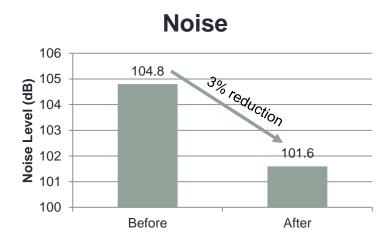

Diamond Grinding

- DG is concrete pavement restoration technique
- DG works by removing a very thin layer off the top of a pavement
- DG was used to improve pavement functionality such as smoothness and skid resistance, etc.
- DG has been used in pavement field for over half a century in the U.S.
- 750,000+ square yard areas were diamond ground on Texas highways in 2012

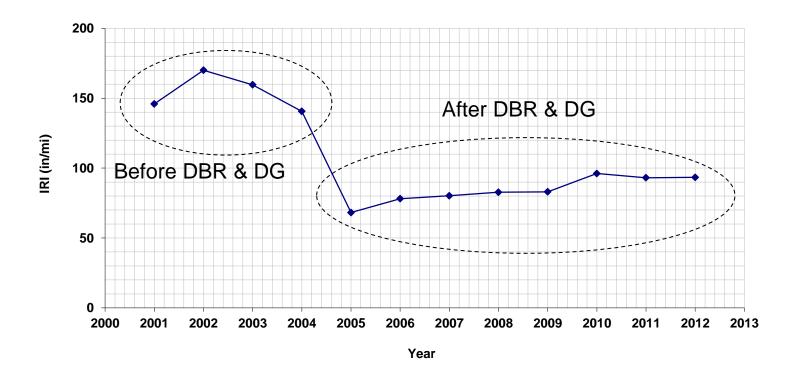





Case Study 1 @ IH35

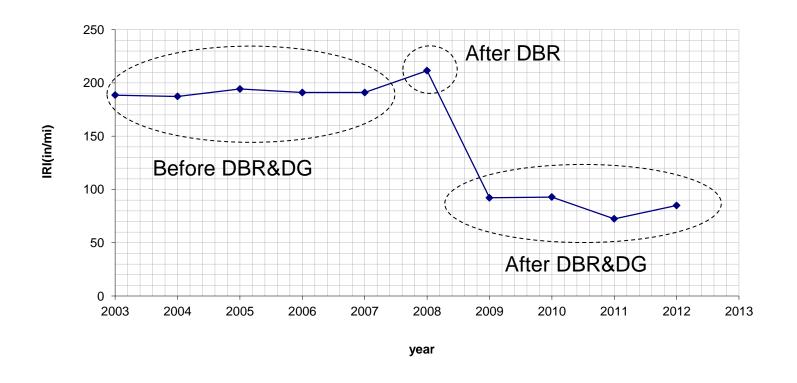

- Location
 - Fort Worth district, IH35 W
- Pavement type
 - CRCP
- Treatment
 - **DG** in 2011 & 2012
 - Purpose: Improve skid resistance
- Performance index
 - Crash accident (source: crash report information system, CRIS)
 - Skid (source: project 5-9046)
 - Noise (source: project 5-9046)
 - Ride quality (source: project 5-9046)

Case Study 1 @ IH35: Results



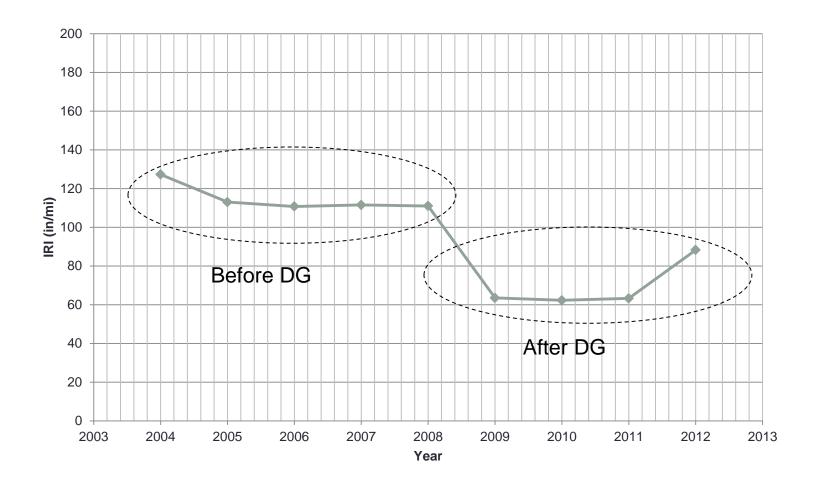
Case Study 2 @ US287

- Location
 - Childress district, US287
- Pavement type
 - JCP (13" JCP over 9" lime treated subgrade)
- Treatment
 - DG & Dowel Bar Retrofit (DBR) in 2004
 - Purpose: fix faulting at joint
- Performance index
 - Ride quality (source: pavement management information system, PMIS)


Case Study 2 @ US287: Results

Case Study 3 @ US69

- Location
 - Beaumont district, US69
- Pavement type
 - JCP (12" JCP on 6" stablized base)
- Treatment
 - DG & Dowel Bar Retrofit (DBR) in 2001
 - Purpose: fix faulting at joint
- Performance index
 - Ride quality (source: PMIS)


Case Study 3 @ US69: Results

Case Study 4 @ US96

- Location
 - Beaumont district, US96
- Pavement type
 - JCP (11" JCP on 1" AC bond breaker on 6" cement-treated base)
- Treatment
 - DG in 2008
 - Purpose: improve ride
- Performance index
 - Ride quality (source: PMIS)

Case Study 4 @ US96: Results

Performance Trend Analysis: Data Summary

			Traffic				Change in	Change		
#	Highway	DBR	MESAL	ADT	Truck%	Year DG	IRI (in./mi.) ¹	in Skid		
1	US69L	Yes	14.47	22,000	13.7	2008	-62.9	0.8		
2	US69R	Yes	14.47	22,000	13.7	2008	-122.8	1.8		
3	US287	Yes	24.40	14,000	26.8	2004	-72.4	2		
4	US59	Yes	24.69	17,000	23.1	2005	-43.7	0.5		
5	US96L	No	15.61	25,000	13	2008	-72.3	-		
6	US96R	No	15.61	25,000	13	2008	-47.5	-		
7	US82EB	Yes	20.70	24,000	18.6	2010	-52.0	-		
8	US82WB	Yes	20.70	24,000	18.6	2010	-55.4	-		
9	US90	No	10.49	22,000	9.9	2008	-79.4	18.1		
10	IH35 R	No	150.21	115,000	22.6	2009	-25.3	7.6		
11	IH35 L	No	150.21	115,000	22.6	2009	-19.6	8.5		
						Average	-59.4	5.6		
1. 1	1. 1 in./mi. = 1/63 m/km									

Ride Analysis: Statistical Model

```
IRI = a_0 + a_1Age + a_2BeforeIRI + a_3DBR + a_4ADT + a_5Site1 + a_6Site2 + a_7Site3 + \varepsilon
```

```
Where:
```

IRI: The ride quality after DG, in./mi.;

Age: Time after DG, years;

BeforeIRI: The ride quality before DG, in./mi.;

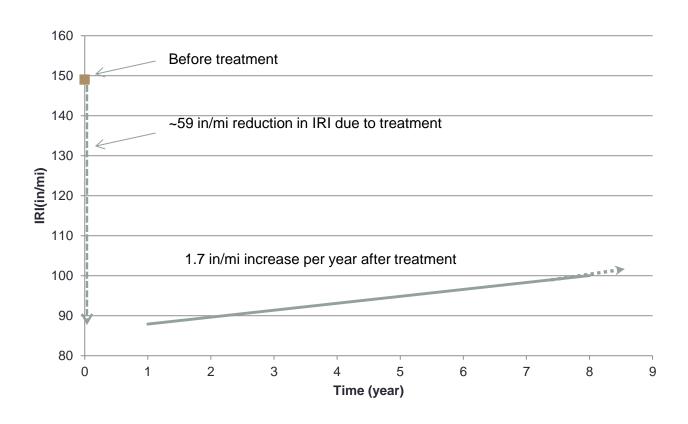
DBR: Dowel bar retrofit, dummy variable;

ADT: Average daily traffic, in 1,000 vehicles;

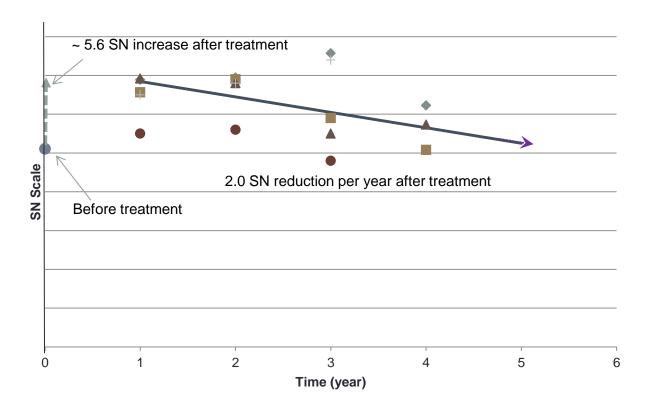
Site1: Site specific factor representing site 1;

Site2: Site specific factor representing site 2;

Site3: Site specific factor representing site 3;


 a_0, a_1, \dots : Parameters to be estimated; and

 ε : Error term.


Ride Analysis: Model Estimation Results

Variable	Parameter	Mean	t-stat
Intercept	a_0	52.0	5.7
Age	a_1	1.7	3.0
Before IRI	a_2	0.1	2.6
DBR	a_3	4.7	1.1
ADT	a_7	1.7	4.3
Site1	a_4	2.1	0.5
Site2	a_5	42.1	12.7
Site3	a_6	-4.7	-1.2
R ²	0.92		

Ride Analysis: Change and Trend

Skid Analysis: Trend

Summary

 Based on field studies of a sample of concrete pavements across Texas, it is suggested that DG could be an effective measure to:

- Improve ride quality
- Improve skid resistance
- Reduce noise

Acknowledge

 Dar Hao Chen, Magdy Mikhail, Juan Gonzalez, David Wagner, Hua Chen, John Wirth, Wade Blackmon, and Peter Jungen of the Texas Department of Transportation

Thank you & Be safe

feng.hong@txdot.gov
(512)506-5989
cas Department of Transportation